

Fractal Calibration for long-tailed object detection Konstantinos Panagiotis Alexandridis¹, Ismail Elezi¹, Jiankang Deng², Anh Nguyen³ and Shan Luo⁴

¹Huawei Noah's Ark Lab, ²Imperial College London, ³University of Liverpool, ⁴King's College London

SUMMARY

- 1. FRACAL is a space-aware logit adjustment method for imbalanced object detection;
- 2. It uses the fractal dimension to capture the occurrence patterns of classes in the training set, and fuses this information during testing via logit adjustment;
- 3. FRACAL surpasses the SOTA in long-tailed detection benchmarks and shows good performance in balanced benchmarks, without requiring training;

MOTIVATION

In imbalanced classification, one can calibrate the logits $z_y \in \mathbf{R}^{\mathbf{C}}$ of a model, to achieve balanced test performance. This process is called logit adjustment and it is defined as:

$$C(z_y) = z_y + \log(p_t(y)) - \log(p_s(y)),$$
 (1)

where $p_s(y)$, $p_t(y)$ are the class priors on train and test sets respectively.

Figure 1: FRACAL embeds space-aware class information in the classification logits.

Eq.1 performs well in classification, however it does not consider the class-location relationship p(y, u), which contains crucial information in object detection. To alleviate this, we propose FRACAL, a space-aware logit adjustment method, that embeds p(y, u) information during inference via the fractal dimension, as shown in Figure 1.

PIPELINE

FRACAL is applied during inference, in the classification logits of the detector. It makes spatially balanced detections for both the frequent classes like *hat* and rare classes like *tiara*.

Figure 2: FRACAL pipeline.

METHOD

To compute p(y, u) we could count the class occurrences $n_y(\mathbf{u})$ of object locations that fall inside the cell $\mathbf{u} = [i, j]$, as shown below. This grid-based method, however, makes $p(y, \mathbf{u})$ sparse and noisy, especially for large grid sizes G as shown in Figure 3-a.

Figure 3: We iteratively count ν_{ν} for various grid-sizes G and do a linear interpolation to find Φ .

To alleviate this, we propose the fractal dimension Φ , which is a grid-independent metric and it can capture p(y, u) more robustly:

$$\Phi(y) = \lim_{G \to \infty} \frac{\log(\nu_y)}{\log(G)}, \text{ where } \nu_y = \sum_{j=0}^{G-1} \sum_{i=0}^{G-1} \mathbb{1}(n_y(\mathbf{u}))$$
(2)

To calculate Eq.2, we compute $\nu_y - G$ pairs up to a threshold t and fit a line to these pairs as shown in Fig. 3(b) and Fig. 3(c). The slope of this line, approximates $\Phi(y)$. To select G we use the rule $G \leq t = \lfloor \sqrt{n_y} \rfloor$, which makes the calculation tractable.

We calculate Φ for all classes in the trainset and we fuse it into the model's predictions as:

$$S(z_y) = \begin{cases} \frac{\sigma(z_y)}{\Phi(y)^{\lambda}}, & y \in \{1, ..., C\} \\ \sigma(z_y), & y = \text{background}, \end{cases}$$
 (3)

where $\sigma()$ is the softmax function and λ a hyperparameter. This encourages balanced predictions and removes spatial bias. Finally, FRACAL is combined with Eq.1 as follows:

$$FRACAL(z_y) = \frac{S(C(z_y))}{\sum_{j=1}^{C+1} S(C(z_j))}.$$
(4)

RESULTS

Results on LVIS dataset, using ResNets, Swin and Sigmoid based detectors. FRACAL outperforms the SOTA as shown in Tables 1 (a-d).

Method	AP^m	Method	AP^m	Method	AP^m	Method	AP^b
MRCNN	25.7	MRCNN	27.0	MRCNN-S	30.9	ATSS	25.3
ECM	27.4	ROG	28.8	FRACAL-S	33.6	$\mathrm{w/}\;\mathrm{FRACAL}$	26.7
LogN	27.5	LogN	29.0	MRCNN-B	36.6	$\overline{\mathrm{GFLv2}}$	27.4
FRACAL	28.6	FRACAL	29.8	FRACAL-B	38.5	$ m w/\ FRACAL$	28.9
(1-a) w/	R50	(1-b) w/	R101	(1-c) w/ S	Swin	(1-d) Sigmoid-	-based

Ablations using FRACAL with MaskRCNN-Resnet50. FRACAL increases the logit adjustment performance with both random samplers, in (2-a), and oversampling, in (2-b), and it outperforms the Grid based adjustment in (2-c).

\mathbf{C}	S	AP^m	AP_r^m		$\frac{S}{S}$	AP^m	AP_r^m	_	Method	AP^m	AP_r^m
		22.8	8.2			25.7	15.8	•	G=1	28.0	22.4
	\checkmark	25.6	13.7		\checkmark	27.7	20.7		G=2	27.1	17.5
\checkmark		26.3	16.5	\checkmark		28.0	22.4		G=4	25.0	10.5
\checkmark	\checkmark	27.3	19.0	\checkmark		28.6	23.0		ours	28.6	23.0
(2-a) Random Sampler			(2-b) RFS				(2-c)	Grid met	hod		

FRACAL generalises to other tasks like COCO, V3DET and OpenImages, using ResNet50.

Method	AP^m	AP^{b}	Method	AP^{b}	Metho	od top-1		
MRCNN	35.4	39.4	APA	29.9	CRCN	IN 65.8		
w/ FRACAL	35.8	39.9	w/ FRACAL	30.3	w/ FRA	CAL 67.5		
(3-a) COCO			(3-b) V3DI	ĖT	(3-c) C	(3-c) OpenImages		

FRACAL increases the fractal dimension of the distribution of the detections, in Figure 4. It reduces the calibration error and the misclassification error as shown in 4-a and 4-b respectively, however, it also increases the false positives.

Figure 4: Φ values of class detections	•
--	---

Method	$LaECE_0 (\downarrow)$	$LaACE_0 (\downarrow)$				
Baseline	16.8	19.8				
FRACAL (ours)	14.9	15.1				
(4-a) Ca	alibration Resi	alts				
Method	$dAP^b_{Cls}(\downarrow)$	$dAP^b_{Bkg}(\downarrow)$				
Baseline	31.76	6.82				
FRACAL (ours)	16.91	2.84				
(4-b) Detection Errors						

Computational cost: The weights of FRACAL need only 28 seconds to be computed, in LVIS dataset, they need to be computed only once, and they are used only during inference.

Contact: alex.kostas@gmail.com